The mean-value at risk static portfolio optimization using genetic algorithm

نویسندگان

  • Vladimir Rankovic
  • Mikica Drenovak
  • Boban Stojanovic
  • Zoran Kalinic
  • Zora Arsovski
چکیده

In this paper we solve the problem of static portfolio allocation based on historical Value at Risk (VaR) by using genetic algorithm (GA). VaR is a predominantly used measure of risk of extreme quantiles in modern finance. For estimation of historical static portfolio VaR, calculation of time series of portfolio returns is required. To avoid daily recalculations of proportion of capital invested in portfolio assets, we introduce a novel set of weight parameters based on proportion of shares. Optimal portfolio allocation in the VaR context is computationally very complex since VaR is not a coherent risk metric while number of local optima increases exponentially with the number of securities. We presented two different single-objective and a multiobjective technique for generating mean–VaR efficient frontiers. Results document good risk/reward characteristics of solution portfolios while there is a trade-off between the ability to control diversity of solutions and computation time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Portfolio Allocation based on two Novel Risk Measures and Genetic Algorithm

The problem of optimal portfolio selection has attracted a great attention in the finance and optimization field. The future stock price should be predicted in an acceptable precision, and a suitable model and criterion for risk and the expected return of the stock portfolio should be proposed in order to solve the optimization problem. In this paper, two new criterions for the risk of stock pr...

متن کامل

Optimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures

This paper presents an optimal portfolio selection approach based on value at risk (VaR), conditional value at risk (CVaR), worst-case value at risk (WVaR) and partitioned value at risk (PVaR) measures as well as calculating these risk measures. Mathematical solution methods for solving these optimization problems are inadequate and very complex for a portfolio with high number of assets. For t...

متن کامل

Optimizing the Prediction Model of Stock Price in Pharmaceutical Companies Using Multiple Objective Particle Swarm Optimization Algorithm (MOPSO)

The purpose of this study is to optimize the stock price forecasting model with meta-innovation method in pharmaceutical companies.In this research, stock portfolio optimization has been done in two separate phases.The first phase is related to forecasting stock futures based on past stock information, which is forecasting the stock price using artificial neural network.The neural network used ...

متن کامل

Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange

Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...

متن کامل

Stock Portfolio-Optimization Model by Mean-Semi-Variance Approach Using of Firefly Algorithm and Imperialist Competitive Algorithm

Selecting approaches with appropriate accuracy and suitable speed for the purpose of making decision is one of the managers’ challenges. Also investing decision is one of the main decisions of managers and it can be referred to securities transaction in financial markets which is one of the investments approaches. When some assets and barriers of real world have been considered, optimization of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Sci. Inf. Syst.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2014